Abstract

In this study, a high-sensitive and high-specific method to detect the toxic shock syndrome toxin-1 (TSST-1)-producing Staphylococcus aureus was developed based on quantum dot (QD) and oligonucleotide probe complexes. S. aureus carrying tst gene which is responsible for the production of TSST-1 were detected based on fluorescence resonance energy transfer (FRET) occurring between CdSe/ZnS QD donors and black hole quencher (BHQ) acceptors. QD-DNA probe was prepared by conjugating the carboxyl-modified QD and the amino-modified DNA with the EDC. Photoluminescence (PL) quenching was achieved through FRET after the addition of BHQ-DNA which was attached to tst gene probe by match sequence hybridization. The PL recovery was detected in the presence of target DNA by BHQ-DNA detached from QD-DNA probe because of the different affinities. In contrast, mismatch oligonucleotides and DNAs of other bacteria did not contribute to fluorescence intensity recovery, which exhibits the higher selectivity of the biosensor. The experimental results showed clearly that the intensity of recovered QD PL is linear to the concentration of target DNA within the range of 0.2-1.2 μM and the detection limit was 0.2 μM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call