Abstract

Generalized likelihood ratio (GLR) test statistics are often used in the detection of spatial clustering in case-control and case-population datasets to check for a significantly large proportion of cases within some scanning window. The traditional spatial scan test statistic takes the supremum GLR value over all windows, whereas the average likelihood ratio (ALR) test statistic that we consider here takes an average of the GLR values. Numerical experiments in the literature and in this paper show that the ALR test statistic has more power compared to the spatial scan statistic. We develop in this paper accurate tail probability approximations of the ALR test statistic that allow us to by-pass computer intensive Monte Carlo procedures to estimate p-values. In models that adjust for covariates, these Monte Carlo evaluations require an initial fitting of parameters that can result in very biased p-value estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.