Abstract

To solve the failure problem of the visible/near infrared (VIS/NIR) spectroscopy model, soluble solids content (SSC) detection for fresh jujubes cultivated in different modes was carried out based on the method of variable optimization and model update. Iteratively retained informative variables (IRIV) and successive projections algorithm (SPA) algorithms were used to extract characteristic wavelengths, and least square support vector machine (LS-SVM) was used to establish detection models. Compared with IRIV, IRIV-SPA achieved better performance. Combined with the offset properties of the wavelength, repeated wavelengths were removed, and wavelength recombination was carried out to create a new combination of variables. Using these fused wavelengths, the model was recalibrated based on the Euclidean distance between samples. The LS-SVM detection model of SSC was established using the update method of wavelength fusion-Euclidean distance. Good prediction results were achieved using the proposed model. The determination coefficient (R2), root mean square error (RMSE), and residual predictive deviation (RPD) of the test set on SSC of fresh jujubes cultivated in the open field were 0.82, 1.49%, and 2.18, respectively. The R2, RMSE, and RPD of the test set on SSC of fresh jujubes cultivated in the rain shelter were 0.81, 1.44%, and 2.17, respectively. This study realized the SSC detection of fresh jujubes with different cultivation and provided a method for the establishment of a robust VIS/NIR detection model for fruit quality, effectively addressing the industry need for identifying jujubes grown in the open field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.