Abstract

AbstractLaser beam welding has become widely applied in many industrial fields in recent years. Solidification cracks remain one of the most common welding faults that can prevent a safe welded joint. In civil engineering, convolutional neural networks (CNNs) have been successfully used to detect cracks in roads and buildings by analysing images of the constructed objects. These cracks are found in static objects, whereas the generation of a welding crack is a dynamic process. Detecting the formation of cracks as early as possible is greatly important to ensure high welding quality. In this study, two end-to-end models based on long short-term memory and three-dimensional convolutional networks (3D-CNN) are proposed for automatic crack formation detection. To achieve maximum accuracy with minimal computational complexity, we progressively modify the model to find the optimal structure. The controlled tensile weldability test is conducted to generate long videos used for training and testing. The performance of the proposed models is compared with the classical neural network ResNet-18, which has been proven to be a good transfer learning model for crack detection. The results show that our models can detect the start time of crack formation earlier, while ResNet-18 only detects cracks during the propagation stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.