Abstract

The possibility of detecting small forest fires with the help of a simple and cheap lidar operating at 0.532-μm wavelength up to distances of about 6.5 km is demonstrated. The values of the signal-to-noise ratio (SNR) achieved in the experiments are consistent with theoretical estimations obtained by computational modeling of the lidar detection process, including simulation of the smoke-plume shape and of the laser beam–plume interaction. This model was used to assess the potential of the lidar technique for fire surveillance in large forest areas. In particular, the upper limiting range for effective detection (SNR>5) of small localized fires in dry- and clear-weather conditions is estimated at 7–15 km depending on operation mode, burning rate, and observation geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.