Abstract
In this paper, we describe and assess feasibility of instrumentation and algorithms for detecting bleeding due to hemorrhagic strokes and traumatic brain injury using electrical impedance tomography, a novel biomedical diagnostic modality in which the body is probed noninvasively with generally imperceptible alternating currents applied in patterns to a set of electrodes placed in contact with the skin. We focus on the GENESIS instrument developed by GE Global Research and on the achievability of our goal to detect a bleed in the center of the head with a volume of several ml. Our main topic is compensation for the large changes in voltages that tend to occur when the electrodes are in contact with biological media, specifically either human subjects or with vegetable matter proxies which seem to exhibit the same ‘drift’ phenomenon. We show that these changes in voltages can be modeled by assuming that each electrode is attached to the body via a discrete complex impedance whose value is time-varying and describe how this discrete component value can be estimated and largely compensated-for. We compare this discrete model with changes in contact impedances estimated using the complete electrode model showing that the two models are roughly comparable in their ability to explain the data from a single human subject experiment with electrodes attached to the head. In a simulation study, we demonstrate that it is possible to detect a small bleed in the center of the head even in the case of large changes in electrode impedances, which can be treated as nuisance parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.