Abstract
Controlling the quantum properties of individual fluorescent defects in silicon is a key challenge towards advanced quantum photonic devices prone to scalability. Research efforts have so far focused on extrinsic defects based on impurities incorporated inside the silicon lattice. Here we demonstrate the detection of single intrinsic defects in silicon, which are linked to a tri-interstitial complex called W-center, with a zero-phonon line at 1.218${\mu}$m. Investigating their single-photon emission properties reveals new information about this common radiation damage center, such as its dipolar orientation and its photophysics. We also identify its microscopic structure and show that although this defect does not feature electronic states in the bandgap, Coulomb interactions lead to excitonic radiative recombination below the silicon bandgap. These results could set the stage for numerous quantum perspectives based on intrinsic luminescent defects in silicon, such as quantum integrated photonics, quantum communications and quantum sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.