Abstract

Chemotherapy combined with total-body irradiation (TBI), a conditioning regimen for bone-marrow transplantation (BMT), causes lesions in the cellular DNA of the patients treated. To understand possible consequences of the DNA damage induced during such treatment, information is required about the nature of the damage, the level of induction and its persistence, and about the importance of the various lesions for cell-lethality and/or mutation induction. Recently, we developed a sensitive immunochemical method to quantify single-strand breaks (SSB) in the DNA of mammalian cells. In addition, a modification of the so-called alkaline elution technique was introduced which allows quantification of SSB together with base damage (SSB+BD). These methods have now been applied successfully to study the in vivo induction and repair of DNA damage in WBC of leukaemia patients who prior to BMT were treated with cyclophosphamide (CY) and received TBI. SSB and SSB+BD were determined after two treatments with CY (60 mg kg-1) followed by TBI (4.5-8.6Gy). The CY treatments gave rise to rather persistent SSB. In addition to these, radiation-induced SSB and SSB+BD could be detected shortly after TBI. However, 105 min after TBI, these SSB could be observed no longer, as a result of rapid repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.