Abstract

In this work, the detection of metal nanoparticle collision events in a non-aqueous solvent-here, toluene and acetonitrile-using gold nanoparticles and a platinum ultramicroelectrode (UME) is reported. The collisions were monitored by the oxidation of tri-n-propylamine (TPrA) under diffusion-dominated conditions. Based on the current response, it was observed that the current steps were indicative of a mediated Faradaic reaction. Current steps as small as 1-2 pA could be clearly observed. Larger current steps were caused by agglomeration of the nanoparticles attributed to the polarity of the mixed solvent. The experimentally observed collisions per second ranged from 0.07 to 0.51, indicating that particle agglomeration in solution occurs rapidly, reversibly and can subsequently cause rapid and, often, repeated collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.