Abstract

Sexual dimorphisms are widespread in animals and plants, for morphological as well as physiological traits. Understanding the genetic basis of sexual dimorphism and its evolution is crucial for understanding biological differences between the sexes. Genetic variants with sex‐antagonistic effects on fitness are expected to segregate in populations at the early phases of sexual dimorphism emergence. Detecting such variants is notoriously difficult, and the few genome‐scan methods employed so far have limited power and little specificity. Here, we propose a new framework to detect a signature of sexually antagonistic (SA) selection. We rely on trio datasets where sex‐biased transmission distortions can be directly tracked from parents to offspring, and identify signals of SA transmission distortions in genomic regions. We report the genomic location of six candidate regions detected in human populations as potentially under sexually antagonist selection. We find an enrichment of genes associated with embryonic development within these regions. Last, we highlight two candidate regions for SA selection in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call