Abstract
The problem of mining for outliers in sequential datasets is crucial to forward appropriate analysis of data. Therefore, many approaches for the discovery of such anomalies have been proposed. However, most of them use a sample of known typical sequences to build the model. Besides, they remain greedy in terms of memory usage. In this paper we propose an extension of one such approach, based on a Probabilistic Suffix Tree and on a measure of similarity. We add a pruning criterion which reduces the size of the tree while improving the model, and a sharp inequality for the concentration of the measure of similarity, to better sort the outliers. We prove the feasability of our approach through a set of experiments over a protein database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.