Abstract

BackgroundTriticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops. Modern genomic approaches aimed at enhancing breeding progress in cereals require high-quality genetic linkage maps. Consensus maps are genetic maps that are created by a joint analysis of the data from several segregating populations and different approaches are available for their construction. The phenomenon that alleles at a locus deviate from the Mendelian expectation has been defined as segregation distortion. The study of segregation distortion is of particular interest in doubled haploid (DH) populations due to the selection pressure exerted on the plants during the process of their establishment.ResultsThe final consensus map, constructed out of six segregating populations derived from nine parental lines, incorporated 2555 DArT markers mapped to 2602 loci (1929 unique). The map spanned 2309.9 cM with an average number of 123.9 loci per chromosome and an average marker density of one unique locus every 1.2 cM. The R genome showed the highest marker coverage followed by the B genome and the A genome. In general, locus order was well maintained between the consensus linkage map and the component maps. However, we observed several groups of loci for which the colinearity was slightly uneven. Among the 2602 loci mapped on the consensus map, 886 showed distorted segregation in at least one of the individual mapping populations. In several DH populations derived by androgenesis, we found chromosomes (2B, 3B, 1R, 2R, 4R and 7R) containing regions where markers exhibited a distorted segregation pattern. In addition, we observed evidence for segregation distortion between pairs of loci caused either by a predominance of parental or recombinant genotypes.ConclusionsWe have constructed a reliable, high-density DArT marker consensus genetic linkage map as a basis for genomic approaches in triticale research and breeding, for example for multiple-line cross QTL mapping experiments. The results of our study exemplify the tremendous impact of different DH production techniques on allele frequencies and segregation distortion covering whole chromosomes.

Highlights

  • Triticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops

  • Genetic diversity analysis This study was based on six segregating populations derived from nine parental lines of which three were used as a common parent each contributing to two populations (Table 1)

  • Diversity Arrays Technology (DArT) marker linkage maps of individual populations The component maps were constructed from six datasets containing between 114 (F2_LxT) and 200 (EAW74, EAW78) individuals and between 510 (F2_LxT) and 1244 (DH06) markers (Table 1)

Read more

Summary

Introduction

Triticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops. Modern genomic approaches aimed at enhancing breeding progress in cereals require high-quality genetic linkage maps. Consensus maps are genetic maps that are created by a joint analysis of the data from several segregating populations and different approaches are available for their construction. Modern genomic approaches to enhance the breeding progress such as association mapping or genomic selection [5,6,7] require the availability of high-quality and high-density genetic linkage maps. Neither distributed homogenously among the different genomes (50.7% located on R genome) nor on the chromosomes. A highly saturated genetic linkage map for triticale is urgently required to enable genomics research and knowledgebased breeding

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call