Abstract
Parasites can interact with their host plants through the induction and delivery of secreted effector proteins that facilitate plant colonization by decomposing plant cell walls and inhibiting plant immune response to weaken the defense ability of the host. Yet effectors mediating parasitic plant-host interactions are poorly understood. Phelipanche aegyptiaca is an obligate root parasite plant causing severe yield and economic losses in agricultural fields worldwide. Host resistance against P. aegyptiaca occurred during the attachment period of parasitism. Comparative transcriptomics was used to assess resistant and susceptible interactions simultaneously between P. aegyptiaca and two contrasting melon cultivars. In total, 2,740 secreted proteins from P. aegyptiaca were identified here. Combined with transcriptome profiling, 209 candidate secreted effector proteins (CSEPs) were predicted, with functional annotations such as cell wall degrading enzymes, protease inhibitors, transferases, kinases, and elicitor proteins. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 20 putatively effector genes among the CSEPs. Cluster 15140.0 can suppress BAX-triggered programmed cell death in N. benthamiana. These findings showed that the prediction of P. aegyptiaca effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, providing insights into understanding the essential molecular nature of effectors and laying the foundation of revealing the parasite mechanism of P. aegyptiaca, which is helpful in understanding parasite-host plant interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.