Abstract

Recent advances in three-dimensional electron microscopy (3D EM) have enabled the quantitative visualization of the structural building blocks of proteins at improved resolutions. We provide algorithms to detect the secondary structures (α-helices and β-sheets) from proteins for which the volumetric maps are reconstructed at 6-10Å resolution. Additionally, we show that when the resolution is coarser than 10Å, some of the supersecondary structures can be detected from 3D EM maps. For both these algorithms, we employ tools from computational geometry and differential topology, specifically the computation of stable/unstable manifolds of certain critical points of the distance function induced by the molecular surface. Our results connect mathematically well-defined constructions with bio-chemically induced structures observed in proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call