Abstract

Aloe vera gel is a globally popular natural product used for the treatment of skin conditions. Its useful properties are attributed to the presence of bioactive polysaccharides. Nearly 25% of the 600 species in the genus Aloe are used locally in traditional medicine, indicating that the bioactive components in Aloe vera may be common across the genus Aloe. The complexity of the polysaccharides has hindered development of relevant assays for authentication of Aloe products. Carbohydrate detecting microarrays have recently been suggested as a method for profiling Aloe polysaccharide composition. The aim of this study was to use carbohydrate detecting microarrays to investigate the seasonal variation in the polysaccharide composition of two medicinal and two non-medicinal Aloe species over the course of a year. Microscopy was used to explore where in the cells the bioactive polysaccharides are present and predict their functional role in the cell wall structure. The carbohydrate detecting microarrays analyses showed distinctive differences in the polysaccharide composition between the different species and carbohydrate detecting microarrays therefore has potential as a complementary screening method directly targeting the presence and composition of relevant polysaccharides. The results also show changes in the polysaccharide composition over the year within the investigated species, which may be of importance for commercial growing in optimizing harvest times to obtain higher yield of relevant polysaccharides.

Highlights

  • The succulent Aloe vera L. leaf tissue is a natural product used globally in a wide range of household commodities (Grace et al, 2015)

  • Tissue pieces of approximately 3 mm in diameter were excised from the sampled material and fixed for 30 min in 4% formaldehyde prepared from paraformaldehyde in phosphate-buffered saline (PBS)

  • Both anti-mannan antibodies detected the polymers in all species, but in A. arborescens, the signal from both antibodies BS-400-4 and LM21 was more pronounced in the outer mesophyll cells than in the inner leaf mesophyll (Figures 4, 5, respectively)

Read more

Summary

Introduction

The succulent Aloe vera L. leaf tissue is a natural product used globally in a wide range of household commodities (Grace et al, 2015). Seasonal Variation in Aloe Polysaccharides amounts of water (Reynolds and Dweck, 1999; Ni et al, 2004; Grace et al, 2015). The colorless polysaccharide-rich gel from the inner leaf is used topically for treatment of wounds, minor burns, and skin irritation or internally for a range of different applications (Grindlay and Reynolds, 1986; Reynolds and Dweck, 1999; Hamman, 2008; Grace et al, 2009). Due to the complexity of the polysaccharides, the composition and bioactivity of Aloe gel is not well understood, and there is a lack of useful methods for analysis and authentication (Bozzi et al, 2007; Grace and Rønsted, 2017)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call