Abstract

Contamination of contact surfaces with SARS-CoV-2 has been reported as a potential route for the transmission of COVID-19. This could be a major issue in developing countries where access to basic sanitation is poor, leading to the sharing of toilet facilities. In this study, we report SARS-CoV-2 contamination of key contact surfaces in shared toilets and the probabilistic risks of COVID-19 infections based on detection and quantification of the nucleic acid on the surfaces. We observed that 54–69% of the contact surfaces were contaminated, with SARS-CoV-2 loads ranging from 28.1 to 132.7 gene copies per cm2. Toilet seats had the highest contamination, which could be attributed to shedding of the virus in feces and urine. We observed a significant reduction in viral loads on the contaminated surfaces after cleaning, showing the potential of effective cleaning on the reduction of contamination. The pattern of contamination indicates that the most contaminated surfaces are those that are either commonly touched by users of the shared toilets or easily contaminated with feces and urine. These surfaces were the toilet seats, cistern handles and tap handles. The likelihood (probability) of infection with COVID-19 on these surfaces was highest on the toilet seat (1.76 × 10−4(1.58 × 10−6)) for one time use of the toilet. These findings highlight the potential risks for COVID-19 infections in the event that intact infectious viral particles are deposited on these contact surfaces. Therefore, this study shows that shared toilet facilities in densely populated areas could lead to an increase in risks of COVID-19 infections. This calls for the implementation of risk reduction measures, such as regular washing of hands with soap, strict adherence to wearing face masks, and effective and regular cleaning of shared facilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call