Abstract
Context. Retrograde Rossby waves, measured to have significant amplitudes in the Sun, likely have notable implications for various solar phenomena. Aims. Rossby waves create small-amplitude, very-low frequency motions, on the order of the rotation rate and lower, which in turn shift the resonant frequencies and eigenfunctions of the acoustic modes of the Sun. The detection of even azimuthal orders Rossby modes using mode coupling presents additional challenges and prior work therefore only focused on odd orders. Here, we successfully extend the methodology to measure even azimuthal orders as well. Methods. We analyze 4 and 8 years of Helioseismic and Magnetic Imager (HMI) data and consider coupling between different-degree acoustic modes (of separations 1 and 3 in the harmonic degree). The technique uses couplings between different frequency bins to capture the temporal variability of the Rossby modes. Results. We observe significant power close to the theoretical dispersion relation for sectoral Rossby modes, where the azimuthal order is the same as the harmonic degree, s = |t|. Our results are consistent with prior measurements of Rossby modes with azimuthal orders over the range t = 4 to 16 with maximum power occurring at mode t = 8. The amplitudes of these modes vary from 1 to 2 m s−1. We place an upper bound of 0.2 m s−1 on the sectoral t = 2 mode, which we do not detect in our measurements. Conclusions. This effort adds credence to the mode-coupling methodology in helioseismology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Astronomy & Astrophysics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.