Abstract
DNA microarray represents one of the major advances in diagnostic sequencing of polymerase chain reaction (PCR) products. Until now, arrays have been relatively expensive, complex to perform, and difficult to interpret, limiting their wide application in the clinical laboratory. A moderate-density oligonucleotide microarray that can rapidly identify Mycobacterium tuberculosis rifampin-resistant strains was developed. The method is based on the detection of point mutations and other rearrangements in the rpoB gene region determining rifampin resistance. Rifampin resistance was determined by hybridizing fluorescently labeled, amplified genetic material generated from bacterial colonies to the array. Fifty-three rifampin-resistant M. tuberculosis and 15 rifampin-susceptible M. tuberculosis were tested and results were concordant with those based on culture drug susceptibility testing and sequencing. Rifampin-resistant clinical isolates were detected in as little as 1.5 hours after PCR amplification with visual results. It is demonstrated that oligonucleotide microarray is an efficient, specialized technique to implement and can be used as a rapid method for detecting rifampin resistance to complement standard culture-based method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.