Abstract

The neuraminidase (NA) inhibitors oseltamivir and zanamivir are the first-line of defense against potentially fatal variants of influenza A pandemic strains. However, if resistant virus strains start to arise easily or at a high frequency, a new anti-influenza strategy will be necessary. This study aimed to investigate if and to what extent NA inhibitor–resistant mutants exist in the wild population of influenza A viruses that inhabit wild birds. NA sequences of all NA subtypes available from 5490 avian, 379 swine and 122 environmental isolates were extracted from NCBI databases. In addition, a dataset containing 230 virus isolates from mallard collected at Ottenby Bird Observatory (Öland, Sweden) was analyzed. Isolated NA RNA fragments from Ottenby were transformed to cDNA by RT-PCR, which was followed by sequencing. The analysis of genotypic profiles for NAs from both data sets in regard to antiviral resistance mutations was performed using bioinformatics tools. All 6221 sequences were scanned for oseltamivir- (I117V, E119V, D198N, I222V, H274Y, R292K, N294S and I314V) and zanamivir-related mutations (V116A, R118K, E119G/A/D, Q136K, D151E, R152K, R224K, E276D, R292K and R371K). Of the sequences from the avian NCBI dataset, 132 (2.4%) carried at least one, or in two cases even two and three, NA inhibitor resistance mutations. Swine and environmental isolates from the same data set had 18 (4.75%) and one (0.82%) mutant, respectively, with at least one mutation. The Ottenby sequences carried at least one mutation in 15 cases (6.52%). Therefore, resistant strains were more frequently found in Ottenby samples than in NCBI data sets. However, it is still uncertain if these mutations are the result of natural variations in the viruses or if they are induced by the selective pressure of xenobiotics (e.g., oseltamivir, zanamivir).

Highlights

  • The scientific community has frequently expressed concern about the potential of influenza A virus to evolve into novel strains that can spread globally and induce pandemics [1,2,3]

  • Some subtypes are more sensitive to oseltamivir carboxylate (OC) than to zanamivir, while the opposite is observed with other subtypes (e.g., N1) [14,43]

  • In this study 6221 NA sequences were scanned for published anti-OC and anti-zanamivir mutations (Table 1)

Read more

Summary

Introduction

The scientific community has frequently expressed concern about the potential of influenza A virus to evolve into novel strains that can spread globally and induce pandemics [1,2,3]. These warnings were proven justified 2009 when the world experienced the last influenza A pandemic induced by strain H1N1, known as swine influenza or new influenza. The influenza genome encodes 11 proteins, of which one is non-structural. Avian influenza A is classified according the presence of two membrane proteins, hemagglutinin (HA) and neuraminidase (NA). There are 16 HA and nine NA identified subtypes, and the majority of subtypes (96 of 144) are found in the mallard duck (Anas platyrhynchos), assumed to be the major host and source of the influenza A viruses [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call