Abstract
After cerebral ischemia or trauma, secondary neurodegeneration may occur in brain regions remote from the lesion. Little is known about the capacity of cerebral gliomas to induce secondary neurodegeneration. A previous study showed that cis-4-[(18)F]fluoro-D-proline (D-cis-[(18)F]FPro) detects secondary reactions of thalamic nuclei after cortical infarction with high sensitivity. Here we investigated the potential of D-cis-[(18)F]FPro to detect neuronal reactions in remote brain areas in the F98 rat glioma model using ex vivo autoradiography. Although the tumor tissue of F98 gliomas showed no significant D-cis-[(18)F]FPro uptake, we observed prominent tracer uptake in 7 of 10 animals in the nuclei of the ipsilateral thalamus, which varied with the specific connectivity with the cortical areas affected by the tumor. In addition, strong D-cis-[(18)F]FPro accumulation was noted in the hippocampal area CA1 in two animals with ipsilateral F98 gliomas involving hippocampal subarea CA3 rostral to that area. Furthermore, focal D-cis-[(18)F]FPro uptake was present in the necrotic center of the tumors. Cis-4-[(18)F]fluoro-D-proline uptake was accompanied by microglial activation in the thalamus, in the hippocampus, and in the necrotic center of the tumors. The data suggest that brain tumors induce secondary neuronal reactions in remote brain areas, which may be detected by positron emission tomography (PET) using D-cis-[(18)F]FPro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.