Abstract

The presence and activity of proteolytic enzymes has been investigated in vitro on soluble and insoluble preparations obtained from both unimplanted and implanted glutaraldehyde-treated bovine parietal pericardium. Using detection by colorimetric techniques, soluble preparations were shown to hydrolyze enzyme substrates that are characteristic for trypsin-like proteases, cathepsin-like proteases, and collagenase. As detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in gradient gels and gel filtration on Sepharose CL-6B, insoluble (pellet) preparations degraded denatured type I collagen in a time-dependent pattern, producing low-molecular-weight fragments. These activities were partially inhibited by phenylmethylsulfonyl fluoride, N-ethyl maleimide, soybean trypsin inhibitor, para-chloromercuribenzoic acid, or ethylenediaminetetraacetic acid, suggesting the presence of a heterogeneous enzymatic mixture. Insoluble preparations incubated with pure pericardial dermatan sulfate proteoglycan detached the glycosaminoglycan chains from their core protein carrier, producing a digestion pattern similar to Cathepsin C. These findings demonstrate the presence of active proteases in glutaraldehyde-fixed bovine pericardium per se and in explanted pericardial bioprosthetic cardiac valves, an additional factor that might contribute to intrinsic extracellular matrix degeneration in pericardial bioprosthetic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call