Abstract
Ion mobility mass spectrometry (IMS) acts as an additional separation dimension when integrated into liquid chromatography-mass spectrometry (LC-MS) workflows. LC-IMS-MS methods provide higher peak resolution, enhanced separation of isobaric and isomeric compounds, and improved signal-to-noise ratio (S/N) compared to traditional LC-MS methods. IMS provides another molecular characteristic for the identification of analytes, namely the collision cross section (CCS) parameter, reducing false positive results. Therefore, LC-IMS-MS methods address important analytical challenges in the field of food safety (i.e., detection of compounds at trace levels in complex food matrices and unambiguous identification of isobaric and isomeric molecules). Ergot alkaloids (EAs) are a family of mycotoxins produced by fungi that attack a wide variety of grass species, including small grains such as rye, triticale, wheat, barley, millet, and oats. Maximum levels (MLs) of these mycotoxins have been established in several foodstuffs, as detailed in the Commission Regulation EC/2023/915. This new legislation includes six main EAs and their corresponding epimers, so an efficient methodology is required to properly distinguish these isomeric molecules considering their co-occurrence. Therefore, the goal of this protocol is to show how the integration of IMS in LC-MS workflows contributes to the separation of isomeric EAs, enhancing the selectivity of the analytical method. Additionally, it illustrates how the generation of CCS libraries through the characterization of analytical standards provides higher confidence for the identification of mycotoxins. This protocol is designed to clearly explain the benefits of implementing IMS in food safety, taking as an example the determination of EAs in cereals. A QuEChERS-based extraction followed by an LC-trapped ion mobility spectrometry (TIMS)-MS analysis provided limits of quantification ranging from 0.65 to 2.6 ng/g with acceptable accuracy (although low recovery for ergotaminine) at 1.5x, 1x, and 0.5x the ML and exhibited a negligible matrix effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.