Abstract

BackgroundDifferent types of reactive oxygen metabolites (ROMs) are known to be involved in carcinogenesis. Several studies have emphasized the formation of ROMs in ischemic tissues and in cases of inflammation. The increased amounts of ROMs in tumor tissues can either be because of their causative effects or because they are produced by the tumor itself. Our study aimed to investigate and compare the levels of ROMs in tumor tissue and adjacent lung parenchyma obtained from patients with lung cancer.MethodsFifteen patients (all male, mean age 63.6 ± 9 years) with non-small cell lung cancer were enrolled in the study. All patients were smokers. Of the patients with lung cancer, twelve had epidermoid carcinoma and three had adenocarcinoma. During anatomical resection of the lung, tumor tissue and macroscopically adjacent healthy lung parenchyma (control) that was 5 cm away from the tumor were obtained. The tissues were freshly frozen and stored at −20°C. The generation of ROMs was monitored using luminol- and lucigenin-enhanced chemiluminescence (CL) techniques.ResultsBoth luminol (specific for .OH, H2O2, and HOCl-) and lucigenin (selective for O2.-) CL measurements were significantly higher in tumor tissues than in control tissues (P <0.001). Luminol and lucigenin CL measurements were 1.93 ± 0.71 and 2.5 ± 0.84 times brighter, respectively, in tumor tissues than in the adjacent parenchyma (P = 0.07).ConclusionIn patients with lung cancer, all ROM levels were increased in tumor tissues when compared with the adjacent lung tissue. Because the increase in lucigenin concentration, which is due to tissue ischemia, is higher than the increase in luminol, which is directly related to the presence and severity of inflammation, ischemia may be more important than inflammation for tumor development in patients with lung cancer.

Highlights

  • Different types of reactive oxygen metabolites (ROMs) are known to be involved in carcinogenesis

  • We investigated the role of oxidative stress in lung cancer

  • We demonstrated that ROM levels, as measured by the CL method, were significantly higher in the cancerous tissues of lung cancer patients than in control tissues obtained from the same patients

Read more

Summary

Introduction

Different types of reactive oxygen metabolites (ROMs) are known to be involved in carcinogenesis. Several studies have emphasized the formation of ROMs in ischemic tissues and in cases of inflammation. The increased amounts of ROMs in tumor tissues can either be because of their causative effects or because they are produced by the tumor itself. Our study aimed to investigate and compare the levels of ROMs in tumor tissue and adjacent lung parenchyma obtained from patients with lung cancer. Tobacco smoke is the main cause of lung cancer and is responsible for 87% of all lung cancers in the United States [1,2]. It is difficult to quantitate ROMs because of their short-lived and reactive nature, the chemiluminescence (CL) method used in the present study is a simple and reproducible technique. The two CL probes, luminol and lucigenin, differ in their selectivity. Lucigenin is sensitive to the superoxide radical (O2.-), whereas luminol detects hydrogen peroxide (H2O2), hydroxyl radicals (.OH), hypochlorite (ClO-), peroxynitrite (ONOO-), and lipid peroxyl radicals [9]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.