Abstract
Microwave radiometers measure weak thermal emission from the Earth, which is broadband in nature. Radio frequency interference (RFI) originates from active transmitters and is typically narrow band, directional, and continuous or intermittent. The Global Precipitation Measurement (GPM) Microwave Imager (GMI) has seen RFI caused by ocean reflections from direct broadcast and communication satellites in the shared 18.7-GHz allocated band. This paper focuses on the use of a complex signal kurtosis algorithm to detect direct broadcast satellite (DBS) signals at 18.7 GHz. An experiment was conducted in August 2017 at the Harvest oil platform, located about 10 km off the coast of central California. Data were collected for direct and ocean reflected DBS transmissions in the K- and Ku-bands from a commercial geostationary satellite. Results are presented for the complex kurtosis performance for a five-channel quadrature phase-shift keying (QPSK) signal versus the seven-channel case. As the spectrum becomes more occupied, detector performance decreases. Filtering of RFI in the fully occupied spectrum is very difficult, and detection using the complex kurtosis detector is only possible for very large interference-to-noise ratio (INR) values at −5 dB and higher. This corresponds to over 100 K in a real system such as GMI; therefore, other detection approaches might be more appropriate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.