Abstract

Experiments over the past years have demonstrated that it is possible to bring nanomechanical resonators and superconducting qubits close to the quantum regime and to measure their properties with an accuracy close to the Heisenberg uncertainty limit. Therefore, it is just a question of time before we will routinely see true quantum effects in nanomechanical systems. One of the hallmarks of quantum mechanics is the existence of entangled states. We propose a realistic scenario making it possible to detect entanglement of a mechanical resonator and a qubit in a nanoelectromechanical setup. The detection scheme involves only standard current and noise measurements of an atomic point contact coupled to an oscillator and a qubit. This setup could allow for the first observation of entanglement between a continuous and a discrete quantum system in the solid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.