Abstract

A QTL analysis of fat androstenone levels from a three-generation experimental cross between Large White and Meishan pig breeds was carried out. A total of 485 F2 males grouped in 24 full-sib families, their 29 parents and 12 grandparents were typed for 137 markers distributed over the entire porcine genome. The F2 male population was measured for fat androstenone levels at 100, 120, 140, and 160 d of age and at slaughter around 80 kg liveweight. Statistical analyses were performed using two interval mapping methods: a line-cross (LC) regression method, which assumes alternative alleles are fixed in founder lines, and a half- full-sib (HFS) maximum likelihood method, where allele substitution effects were estimated within each half- and full-sib family. Both methods revealed genomewide significant gene effects on chromosomes 3, 7, and 14. The QTL explained, respectively, 7 to 11%, 11 to 15%, and 6 to 8% of phenotypic variance. Three additional significant QTL explaining 4 to 7% of variance were detected on chromosomes 4 and 9 using LC method and on chromosome 6 using HFS method. Suggestive QTL were also obtained on chromosomes 2, 10, 11, 13, and 18. Meishan alleles were associated with higher androstenone levels, except on chromosomes 7, 10, and 13, although 10 and 13 additive effects were near zero. The QTL had essentially additive effects, except on chromosomes 4, 10, and 13. No evidence of linked QTL or imprinting effects on androstenone concentration could be found across the entire porcine genome. The steroid chromosome P450 21-hydroxylase (CYP21) and cytochrome P450 cholesterol side chain cleavage subfamily XIA (CYP11A) loci were investigated as possible candidate genes for the chromosome 7 QTL. No mutation of coding sequence has been found for CYP21. Involvement of a candidate regulatory mutation of CYP11A gene proposed by others can be excluded in our animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.