Abstract

Chilling damage significantly reduces grain yield in rice, while exploring major quantitative trait loci (QTLs) has the potential to improve rice production. Mapping of QTLs for 5 cold tolerance-related traits at the booting stage was conducted with SSR markers and inclusive composite interval mapping (ICIM) approach, based on 105 near-isogenic lines derived from a backcross between Lijiangxintuanheigu (LTH, cold-tolerant landrace) and Towada (cold-sensitive cultivar). Phenotype values were investigated under five cold-stress environments and analysed by the best linear unbiased prediction (BLUP). Twenty-one QTLs were identified on chromosomes 1, 2, 3, 4, 6, 7, 10 and 11, and the amount of variation (R<sup>2</sup>) explained by each QTL ranged from 7.71 to 29.66%, with five co-located QTL regions. Eight novel major loci (qSF-2, qSF-6a, qSF-7, qGW-6, qDGWP-4, qDSWPP-4, qDWPP-1 and qDWPP-4b) were detected in several environments and BLUP, and their alleles were contributed by LTH with R<sup>2 </sup>variance from 12.24 to 29.66%. These favourable QTLs would facilitate elucidation of the genetic mechanism of cold tolerance and provide strategies for breeding high-productive rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.