Abstract

Pyrethroid insecticides target voltage-gated sodium channels (VGSCs) that are essential for electrical signaling in the nervous system of insects. Three-point mutations at the corresponding amino acid sequence positions M815I, T917I, and L920F located in domain II conferring the knockdown resistance (kdr) are the most important mutations in pyrethroid-resistant lice worldwide. In addition, six new mutations have been reported in the extracellular loops IIS1-2 (H813P) and IIS5 (I927F, L928A, R929V, L930M, L932M) in the α- subunit of the sodium channel in lice. The aim of this study was to detect alleles resistant to pyrethroids in the domain II (S5-S6) of the VGSC gene in goat biting louse. Goat biting lice were collected from five provinces in the west and northwest of Iran. Genomic DNA was extracted from goat biting lice and Bovicola (Damalinia) caprae species was confirmed by amplifying the cytochrome oxidase subunit I (COXI) gene. A fragment in the domain II (S5-S6) of the VGSC gene was amplified using the specific primers and the resultant polymerase chain reaction products were sequenced. Substitutions T917I, L920F, I927F, L928A, R929V and L930M were identified in the examined sequences. The results showed that all the examined lice had at least one mutation in their VGSC gene associated with pyrethroid resistance or new mutations. The presence of these mutated alleles in the VGSC gene may be due to the long-term and multiple use of pyrethroids against arthropods. Thus, the molecular detection of resistance to pyrethroid insecticides in goat chewing lice can help plot a kdr frequency map to enact effective policies to control caprine pediculosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call