Abstract
Abstract The pulsar classification represents a major issue in the astrophysical area. The Bagging Algorithm is an ensemble method widely used to improve the performance of classification algorithms, especially in the case of pulsar search. In this way, our paper tries to prove how the Bagging Method can improve the performance of pulsar candidate detection in connection with four basic classifiers: Core Vector Machines (CVM), the K-Nearest-Neighbors (KNN), the Artificial Neural Network (ANN), and Cart Decision Tree (CDT). The Error Rate, Area Under the Curve (AUC), and Computation Time (CT) are measured to compare the performance of different classifiers. The High Time Resolution Universe (HTRU2) dataset, collected from the UCI Machine Learning Repository, is used in the experimentation phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Procedia Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.