Abstract

A new computer-aided detection scheme is proposed, the 3D U-Net convolutional neural network, based on multiscale features of transfer learning to automatically detect pulmonary nodules from the thoracic region containing background and noise. The test results can be used as reference information for doctors to assist in the detection of early lung cancer. The proposed scheme is composed of three major steps: First, the pulmonary parenchyma area is segmented by various methods. Then, the 3D U-Net convolutional neural network model with a multiscale feature structure is built. The network model structure is subsequently fine-tuned by the transfer learning method based on weight, and the optimal parameters are selected in the network model. Finally, datasets are extracted to train the fine-tuned 3D U-Net network model to detect pulmonary nodules. The five-fold cross-validation method is used to obtain the experimental results for the LUNA16 and TIANCHI17 datasets. The experimental results show that the scheme not only has obvious advantages in the detection of medium and large-sized nodules but also has an accuracy rate of more than 70% for the detection of small-sized nodules. The scheme provides automatic and accurate detection of pulmonary nodules that reduces the overfitting rate and training time and improves the efficiency of the algorithm. It can assist doctors in the diagnosis of lung cancer and can be extended to other medical image detection and recognition fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call