Abstract

Fluorescent nuclear track detectors based on LiF crystals were successfully applied for detection of proton induced tracks. Irradiations were performed with protons with energy ranging from 1 MeV up to about 56 MeV and for all proton energies the fluorescent tracks were observed. The tracks are not continuous, but consist of a series of bright spots. The gaps between spots tend to narrow with decreasing proton energy (increasing ionization density). For the highest of the studied energies, the spots are scattered so sparsely, that it is not possible to link spots belonging to one track. The intensity (brightness) of the fluorescent tracks increases with the increasing LET and agrees well with the trend established earlier for various heavier ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call