Abstract

The overexpression of specific biomarkers in serum is closely related to diseases, and accurate and sensitive detection of them is beneficial for the early diagnosis and treatment of cancer. In this study, we developed a novel surface-enhanced Raman spectroscopy (SERS)-based aptasensor to detect the prostate-specific antigen biomarkers, consisting of total prostate-specific antigen (PSA) and free prostate-specific antigen (f-PSA). A composite structure containing arrays of polystyrene colloidal sphere @Ag shell (PS@Ag) was fabricated as a SERS-active chip. A complementary DNA probe (SH-DNA) and PSA aptamer (Apt) were immobilised stepwise on the chip, followed by the binding of a Raman reporter methylene blue (MB) to the guanine base of the aptamer. PSA-Apt recognition causes the release of MB-Apt and a decrease in the SERS intensity of MB on the chip, which correlates with the PSA concentration. The proposed biosensor has high spectral reproducibility, selectivity, and sensitivity and successfully determines the PSA levels in serum samples collected from prostate cancer patients, demonstrating great potential for clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.