Abstract

The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared spectrometer (IRIS). These included propane (C3H8) and propyne (CH3C2H), while the intermediate-sized C3Hx hydrocarbon (C3H6) was curiously absent. Using spectra from the Composite Infrared Spectrometer (CIRS) on Cassini, we show the first positive detection of propene (C3H6) in Titan's stratosphere (5-sigma significance), finally filling the three-decade gap in the chemical sequence. We retrieve a vertical abundance profile from 100-250 km, that varies slowly with altitude from ~2 ppbv at 100 km, to ~5 ppbv at 200 km. The abundance of C3H6 is less than both C3H8 and CH3C2H, and we remark on an emerging paradigm in Titan's hydrocarbon abundances whereby: alkanes > alkynes > alkenes within the C2Hx and C3Hx chemical families in the lower stratosphere. More generally, there appears to be much greater ubiquity and relative abundance of triple-bonded species than double-bonded, likely due to the greater resistance of triple bonds to photolysis and chemical attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.