Abstract

Using quantitative PCR that amplified a prey-specific mtDNA 214 bp amplicon from the COI mitochondrial gene of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), prey eggs of known age and number were fed to larvae of the generalist predator lady beetle Coleomegilla maculata (De Geer) (Coleoptera: Coccinellidae), to elucidate the effects of time and diet since consumption, number of prey eggs, and methods for sample fixation and preservation, on the quantity of target DNA detected. Signal was strongly attenuated directly after cessation of feeding, even when predators were immediately frozen at -20°C. However, the quantity of target detected was significantly related to the number of eggs consumed and the time elapsed since eating. Decrease in detected prey DNA was consistent with a negative exponential model. The target DNA sequence disappeared from starved predators (quantitative half-life estimate of 59 min) more slowly than those fed potato aphids after consuming the target prey eggs (half-life estimate 16 min), whereas those fed C. maculata eggs as a chaser were intermediate in the rate at which they degraded the target prey DNA sequence. Fixative protocols are of critical importance in proper use of the qPCR technique. Among seven methods tested, storing the predator immediately in 70% ethanol prechilled to -20°C yielded the highest amount of target sequence, 22.8% of that recovered directly from a single intact prey egg. Samples frozen without solvent at -80°C and -20°C yielded only 6.0% and 2.3% of the target DNA respectively, and room temperature ethanol and ethylene glycol-based antifreeze averaged below 1% recovery of target DNA. Nevertheless, target prey was detected in more than 80% of antifreeze-stored predators. Predators killed and held at room temperature for 4 h or 5 days yielded no target prey DNA in 18 of 20 cases. These results emphasize both the value and the complexities of application of the qPCR technique to field predation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.