Abstract

Atherosclerotic diseases are the leading cause of death worldwide. Biomarkers of atherosclerosis are required to monitor and prevent disease progression. While mass spectrometry is a promising technique to search for such biomarkers, its clinical application is hampered by the laborious processes for sample preparation and analysis. We developed a rapid method to detect plasma metabolites by probe electrospray ionization mass spectrometry (PESI-MS), which employs an ambient ionization technique enabling atmospheric pressure rapid mass spectrometry. To create an automatic diagnosis system of atherosclerotic disorders, we applied machine learning techniques to the obtained spectra. Using our system, we successfully discriminated between rabbits with and without dyslipidemia. The causes of dyslipidemia (genetic lipoprotein receptor deficiency or dietary cholesterol overload) were also distinguishable by this method. Furthermore, after induction of atherosclerosis in rabbits with a cholesterol-rich diet, we were able to detect dynamic changes in plasma metabolites. The major metabolites detected by PESI-MS included cholesterol sulfate and a phospholipid (PE18:0/20:4), which are promising new biomarkers of atherosclerosis. We developed a remarkably fast and easy method to detect potential new biomarkers of atherosclerosis in plasma using PESI-MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.