Abstract

The consumption of drug combinations, named polypharmacy, is commonly used for treating patients with several diseases or those with complex conditions. However, the main drawback of polypharmacy is the increased probability of harmful side effects. The polypharmacy side effects are caused by an interaction between two medications. It means that the drug-drug interaction causes changes in their activities due to interfering in each other's performance. Therefore, discovering these side effects is one of the most challenging and important aspects of drug production and consumption as it is associated with human health. In this paper, a method has been introduced for predicting the polypharmacy side effects, called PSECNN. It is a multi-label multi-class deep learning method that combines various basic features of drugs to predict the polypharmacy side effects. Firstly, PSECNN collects five basic features of drugs, such as individual drug's side effects, drug-protein interactions, chemical substructures, targets, and enzymes in order to create a novel combination of drug features. A feature extraction module creates five feature vectors with the same dimension for each drug based on the Jaccard similarity index. Based on the feature vectors, a unique representative is then created for each drug. These representative vectors are given in pairs as input to the deep neural network to predict the occurrence probability of side effects. According to the experimental evaluations, PSECNN could outperform the state-of-the-art polypharmacy side effects prediction methods up to 74%. It has been found that PSECNN has better performance with polypharmacy side effects with a cause of molecular basis due to the novel combination of basic drug features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call