Abstract

BackgroundThe presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites.Aim and objectivesThe aim of this work was to develop sensitive and cheap Real Time qPCR assays for large-scale epidemiological surveys, based on detection and amplification of gametocyte sex specific transcripts selected from the literature: the female-specific pfs25 and pf glycerol kinase (pfGK) and the male-specific pfs230p and pf13 transcripts.MethodsRTqPCR assays were used to test the gametocyte- and sex-specific expression of the target genes using asexual stages of the gametocyteless parasite clone F12 and FACS purified male and female gametocytes of the PfDynGFP/P47mCherry line. Assays were performed on 50 blood samples collected during an epidemiological survey in the Soumousso village, Burkina Faso, West-Africa, and amplification of the human housekeeping gene 18S rRNA was employed to normalize RNA sample variability.ResultsSYBR Green assays were developed that showed higher sensitivity compared to Taqman assays at a reduced cost. RTqPCR results confirmed that expression of pfs25 and pfs230p are female and male-specific, respectively, and introduced two novel markers, the female-specific pfGK and the male-specific pf13. A formula was derived to calculate the ratio of male to female gametocytes based on the ratio of male to female transcript copy number. Use of these assays in the field samples showed, as expected, a higher sensitivity of RTqPCR compared to microscopy. Importantly, similar values of gametocyte sex-ratio were obtained in the field samples based on the four different target combinations.ConclusionNovel, sensitive, cheap and robust molecular assays were developed for the detection and quantification of female and male P. falciparum gametocytes. In particular, the RTqPCR assays based on the female-specific pfs25 and the newly described male gametocyte-specific pf13 transcripts, including normalization by the human 18S, reliably assess presence and abundance of female and male gametocytes and enable to determine their sex-ratio in human subjects in endemic areas.

Highlights

  • The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission

  • Selection of target and reference genes The P. falciparum pfs25 (PF3D7_1031000) and pf230p (PF3D7_0209000) genes were selected respectively as markers of female and male gametocytes in Reverse Transcriptase quantitative PCR (RTqPCR) assays according to Schneider et al [15]

  • Based on the recent literature, pfs25 and pf glycerol kinase (pfGK) were selected as female gametocyte markers and pf13 and pfs230p as male gametocyte markers

Read more

Summary

Introduction

The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites. Transmission of malaria parasites from the human host to the mosquito vector requires the presence of mature gametocytes in the peripheral blood. Parasite transmission to the vector is a very efficient process as it has been shown that mosquitoes can be infected even when feeding on subjects carrying sub-microscopic gametocyte densities, corresponding to < 4 gametocytes/μl [5, 6]. Gametocyte sex ratio is female biased, can vary during the course of individual infections and is affected by parasite density and transmission level [7, 8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call