Abstract

BackgroundThe proportion of mosquitoes infected with malaria is an important entomological metric used to assess the intensity of transmission and the impact of vector control interventions. Currently, the prevalence of mosquitoes with salivary gland sporozoites is estimated by dissecting mosquitoes under a microscope or using molecular methods. These techniques are laborious, subjective, and require either expensive equipment or training. This study evaluates the potential of near-infrared spectroscopy (NIRS) to identify laboratory reared mosquitoes infected with rodent malaria.MethodsAnopheles stephensi mosquitoes were reared in the laboratory and fed on Plasmodium berghei infected blood. After 12 and 21 days post-feeding mosquitoes were killed, scanned and analysed using NIRS and immediately dissected by microscopy to determine the number of oocysts on the midgut wall or sporozoites in the salivary glands. A predictive classification model was used to determine parasite prevalence and intensity status from spectra.ResultsThe predictive model correctly classifies infectious and uninfectious mosquitoes with an overall accuracy of 72%. The false negative and false positive rates were 30 and 26%, respectively. While NIRS was able to differentiate between uninfectious and highly infectious mosquitoes, differentiating between mid-range infectious groups was less accurate. Multiple scans of the same specimen, with repositioning the mosquito between scans, is shown to improve accuracy. On a smaller dataset NIRS was unable to predict whether mosquitoes harboured oocysts.ConclusionsTo our knowledge, we provide the first evidence that NIRS can differentiate between infectious and uninfectious mosquitoes. Currently, distinguishing between different intensities of infection is challenging. The classification model provides a flexible framework and allows for different error rates to be optimised, enabling the sensitivity and specificity of the technique to be varied according to requirements.

Highlights

  • The proportion of mosquitoes infected with malaria is an important entomological metric used to assess the intensity of transmission and the impact of vector control interventions

  • This study investigates the use of near-infrared spectroscopy (NIRS) to detect the presence of rodent malaria parasites in the Plasmodium berghei-Anopheles stephensi model system

  • The statistical machine learning approach to classification of NIR spectra provides a flexible framework and allows for different error rates to be optimised, enabling the sensitivity and specificity to be varied according to individual experimental requirements

Read more

Summary

Introduction

The proportion of mosquitoes infected with malaria is an important entomological metric used to assess the intensity of transmission and the impact of vector control interventions. The prevalence of mosquitoes with salivary gland sporozoites is estimated by dissecting mosquitoes under a microscope or using molecular methods. These techniques are laborious, subjective, and require either expensive equipment or training. This study evaluates the potential of near-infrared spectroscopy (NIRS) to identify laboratory reared mosquitoes infected with rodent malaria. A calibration dataset is used to develop a predictive model to convert spectra into estimates of the characteristic under study (e.g. age, species or bacterial infection). Informative components of the spectrum are identified and used to predict the characteristic from an unknown sample

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.