Abstract

Phishing is a deceitful trick of cyber-attack designed and implemented by scammers and hackers with purpose of stealing personal data by impersonating the original websites. Phishing is like fishing in a lake wherein the users are very conveniently be fooled by scammers (phishers) by impersonating original websites and contents to leak their valuable personal and professional data. Currently a lot of anti phishing tools and techniques are being applied to detect and nullify the phishing cyber threat viz, heuristic feature, blacklist or white list and visual similarity-based approaches. In this research paper, we have anticipated robust and novel anti-phishing models via (I) Long Short-Term Memory (LSTM), (II) Deep-Neural Network (DNN) and (III) Convolution-Neural Network (CNN) using 10 features. The anticipated model achieves an accuracy of 98.67% for LSTM, 96.33% for DNN and 97.23% for CNN. The proposed techniques are highly efficient and robust which increases the phishing detection manifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.