Abstract

In a simple hydrodynamic model, the transverse momentum distributions are found for A hyperons formed in pp collisions at ultrarelativistic energies. The calculated spectra are compared with the experimental data obtained for various colliders in a wide range of proton collision energies, including the data from experiments at the Large Hadron Collider. An interpretation of the transverse momentum spectra of soft photons in pp collisions is proposed, taking into account the X17 boson with a mass of 17 MeV - a new particle, a possible candidate for the role of dark matter particles. A tube model is proposed on the basis of combining two-dimensional quantum chromodynamics and quantum electrodynamics. An interpretation is proposed for the detection of a 38 MeV boson in the spectra of photons emitted in the reactions of protons with carbon nuclei at an incident proton momentum of 5.5 GeV/c. The X38 boson with a mass of 38 MeV has a mass close to the boson mass obtained by us, equal to 35 MeV for an electromagnetic tube. This new particle was discovered in experiments carried out recently in Dubna for the reactionp p + C→2γ + X. To interpret the obtained experimental data on the spectra of emitted photons depending on their mass, it is proposed to use the formulas obtained for massive particles, setting the mass of a boson decaying into two photons equal to 38 MeV. It was proposed to consider bosons X17 and X38 as particles of dark matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.