Abstract

Paroxysmal Atrial Fibrillation (PAF) is a kind of accidental arrhythmia, and its high missed detection rate leads to the increase of heart-related diseases. An automatic detection method is proposed based on kernel sparse coding, which can identify PAF attacks based only on short RR interval data. A special geometric structure is presented to analyze the high-dimensional characteristics of the data, and the covariance matrix is calculated as a feature descriptor to find the Riemannian manifold structure contained in the data; Based on the Log-Euclidean framework, a manifold method is used to map the manifold space to a high-dimensional renewable kernel Hilbert space to obtain a more accurate sparse representation to identify quickly PAF. After verification by the Massa-chusetts Institute of Technology-Beth Israel Hospital atrial fibrillation database, the sensitivity is 98.71%, the specificity is 98.43%, and the total accuracy rate is 98.57%. Therefore, this study has a substantial improvement in the detection of transient PAF and shows good potential for clinical monitoring and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call