Abstract

Genetic instability is a typical feature of tumor cells. This evidence has stimulated the development of rapid methods for detection of gene mutations. A new, improved protocol for denaturing gradient gel electrophoresis (DGGE), to screen for point mutations in genomic DNA, is reported: double gradient (DG) DGGE. In this technique, to the primary, denaturing gradient (typically 30-80% or 40-80% urea/formamide) a secondary gradient, colinear with the first, is superimposed: a porosity gradient (typically 6.5-12% polyacrylamide). The secondary gradient acts by recompacting smeared and diffuse bands of heteroduplexes, which are often indistinguishable from background fluorescence, and by augmenting the resolution between closely spaced homoduplex zones. This allows proper densitometric quantitation of the ratio of the two homoduplex bands. The reliability of this technique has been documented by detection of a number of mutations in exons 6 and 8 of the p53 gene which had escaped revelation by single-strand conformational polymorphism (SSCP) analysis. Additionally, the precise assessment of ratio of the doublet of homoduplex bands has allowed quantitation of the extent of p53 mutation in a mixed cell population extracted from a tumor specimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.