Abstract

Extensive production and use of organophosphate pesticide in agriculture, has risen concerned about its ecotoxicity and risk assessment of insecticides, which are more important. Therefore, the present investigation was aimed to study the induction of oxidative stress and DNA damage by organophosphate insecticide profenofos (PFF) in freshwater snail Lymnea luteola (L. luteola). The median lethal value (96 h LC50) of PFF was estimated as 1.26 mg/L for L. luteola in a semi-static system and on the basis of LC50 value three concentrations viz., 0.126 (1/10 of LC50, Sublethal I), 0.63 (1/2 of LC50, Sublethal II) and 0.84 mg/L (2/3 of LC50, Sublethal III) were determined. Snails were exposed to above-mentioned concentrations of PFF along with solvent control (acetone) and negative control for 96 h. The haemolymph was collected at 24 and 96 h of after treatment. In heamolymph of PFF exposed snail, lipid peroxide, glutathione reduced glutathione S transferase and superoxide dismutase activities at the tested concentrations significantly differ from those in the control. The genotoxicity induced in hemocytes of treated snails was measured by alkaline single cell gel electrophoresis assay. The data of this experiment demonstrated significantly enhancement of oxidative stress and DNA damage in the treated snails as compared to controls. Also, we observed statistically significant correlations of ROS with DNA damage (% tail DNA) (R2 = 0.9708) for 24 h and DNA damage (R2 = 0.9665) for 96 h. Results of the current experiment can be useful in risk evaluation of PFF among aquatic organisms. The study confirmed the use of comet assay for in vivo laboratory experiments using freshwater snail for selecting the toxic potential of industrial chemicals and environmental contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.