Abstract

Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.

Highlights

  • Neuroprosthetic research aims to provide tools for direct electronic communication between the brain and external actuators to enable paralyzed people to compensate and partially restore lost motor and sensory functions

  • To answer the question whether optogenetic stimulation in somatosensory cortex could be reliably detected by a NHP, we developed a simple tactile sensory detection task focusing on the hand/digit representation of the primary somatosensory cortex (Area 1)

  • Our results present the first demonstration that optogenetic stimulation in the somatosensory cortex can be reliably detected by nonhuman primates

Read more

Summary

Introduction

Neuroprosthetic research aims to provide tools for direct electronic communication between the brain and external actuators to enable paralyzed people to compensate and partially restore lost motor and sensory functions. Preceded by two decades of research in nonhuman primates with accompanying advances in microelectrode-based neural recording and decoding algorithms, the first clinical trials of motor neuroprostheses have succeeded in recording and decoding activity from hundreds of neurons in the motor cortex, enabling participants with tetraplegia to manipulate a robotic arm with multiple degrees of freedom [1,2,3]. These achievements rely on subjects visual feedback and are open loop in that no direct stimulus feedback is applied to the brain. Ultimate biomimetic sensorimotor neuroprosthetics seek to delivered proxy sensory information by stimulating precisely targeted somatosensory areas of the brain that can be interpreted by the patient as originating from their own or a prosthetic limb

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.