Abstract

The National Aeronautics and Space Administration (NASA), along with members of the aircraft industry, recently developed technologies for a new supersonic aircraft. One of the technological areas considered for this aircraft is the use of video cameras and image-processing equipment to aid the pilot in detecting other aircraft in the sky. The detection techniques should provide high detection probability for obstacles that can vary from subpixel to a few pixels in size, while maintaining a low false alarm probability in the presence of noise and severe background clutter. Furthermore, the detection algorithms must be able to report such obstacles in a timely fashion, imposing severe constraints on their execution time. Approaches are described here to detect airborne obstacles on collision course and crossing trajectories in video images captured from an airborne aircraft. In both cases the approaches consist of an image-processing stage to identify possible obstacles followed by a tracking stage to distinguish between true obstacles and image clutter, based on their behavior. For collision course object detection, the image-processing stage uses morphological filter to remove large-sized clutter. To remove the remaining small-sized clutter, differences in the behavior of image translation and expansion of the corresponding features is used in the tracking stage. For crossing object detection, the image-processing stage uses low-stop filter and image differencing to separate stationary background clutter. The remaining clutter is removed in the tracking stage by assuming that the genuine object has a large signal strength, as well as a significant and consistent motion over a number of frames. The crossing object detection algorithm was implemented on a pipelined architecture from DataCube and runs in real time. Both algorithms have been successfully tested on flight tests conducted by NASA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.