Abstract
Nucleic acids, as one kind of significant biomarker, have attracted tremendous attention and exhibited immense values in fundamental studies and clinical applications. In this work, we developed a fluorescent assay for detecting nucleic acids in complex samples based on magnetic microbead (MMB)-assisted catalyzed hairpin assembly (CHA) and a donor donor-acceptor fluorescence resonance energy transfer ("DD-A" FRET) signaling mechanism. Three types of DNA hairpin probes were employed in this system, including Capture, H1 (double FAM-labeled probe as FRET donor), and H2 (TAMRA-labeled probe as FRET acceptor). First, the Captures immobilized on MMBs bound to targets in complex samples, and the sequences in Captures that could trigger catalyzed hairpin assembly (CHA) were exposed. Then, target-enriched MMB complexes were separated and resuspended in the reaction buffer containing H1 and H2. As a result, numerous H1-H2 duplexes were formed during the CHA process, inducing an obvious FRET signal. In contrast, CHA could not be triggered, and the FRET signal was weak, while target was absent. With the aid of magnetic separation and "DD-A" FRET, errors from background interference were effectively eliminated. Importantly, this strategy realized amplified detection in buffer, with detection limits of microRNA as low as 34 pM. Furthermore, this method was successfully applied to detect microRNA-21 in serum and cell culture media. The results showed that our method has the potential for biomedical research and clinical application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.