Abstract

Cycling Probe Technology (CPT) is a signal amplification system that allows detection of nucleic acid target sequences without target amplification. CPT employs a sequence specific chimeric probe, typically DNA-RNA-DNA, which hybridizes to a complementary target DNA sequence and becomes a substrate for RNase H. Cleavage occurs at the RNA internucleotide linkages and results in dissociation of the probe from the target, thereby making it available for the next probe molecule. This communication describes the use of oligonucleotides attached to solid supports for target capture and release followed by solution and solid phase cycling. Through the attachment of chimeric probes to Sera-MagTM magnetic particles (SMP) a simple and effective method of separating the cleaved probe from non-cycled probe has been developed. By capturing the target DNA on particles and separating it from the extraneous non-specific DNA we are able to dramatically reduce background and thus discriminate between samples of Methicillin Resistant (MRSA) and Methicillin Sensitive (MSSA) Staphylococcus Aureus. We conjugated oligonucleotide probes to SMPs (∼1 um) and Nylon beads (NB) which were coated with ID Biomedical's proprietary coating materials (R, patent pending). The general structure of the constructs is shown below:

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.