Abstract

BackgroundMolecular characterisation of normal karyotype acute myeloid leukemia (NK-AML) allows prognostic stratification and potentially can alter treatment choices and pathways. Approximately 45–60% of patients with NK-AML carry NPM1 gene mutations and are associated with a favourable clinical outcome when FLT3-internal tandem duplications (ITD) are absent. High resolution melting (HRM) is a novel screening method that enables rapid identification of mutation positive DNA samples.ResultsWe developed HRM assays to detect NPM1 mutations and FLT3-ITD and tested diagnostic samples from 44 NK-AML patients. Eight were NPM1 mutation positive only, 4 were both NPM1 mutation and FLT3-ITD positive and 4 were FLT3-ITD positive only. A novel point mutation Y572C (c.1715A>G) in exon 14 of FLT3 was also detected. In the group with de novo NK-AML, 40% (12/29) were NPM1 mutation positive whereas NPM1 mutations were observed in 20% (3/15) of secondary NK-AML cases. Sequencing was performed and demonstrated 100% concordance with the HRM results.ConclusionHRM is a rapid and efficient method of screening NK-AML samples for both novel and known NPM1 and FLT3 mutations. NPM1 mutations can be observed in both primary and secondary NK-AML cases.

Highlights

  • Molecular characterisation of normal karyotype acute myeloid leukemia (NK-AML) allows prognostic stratification and potentially can alter treatment choices and pathways

  • Mutations in NPM1 are the most frequent genetic change known in patients with NK-AML and a number of studies have shown that NPM1 mutation positive patients have a better prognosis with longer event-free and overall survival (OS) [10]

  • In this study we assessed the use of high resolution melting (HRM) analysis as a rapid method to screen NK-AML patient samples for the critical molecular changes in NPM1 and FLT3

Read more

Summary

Introduction

Molecular characterisation of normal karyotype acute myeloid leukemia (NK-AML) allows prognostic stratification and potentially can alter treatment choices and pathways. Mutations in NPM1 are the most frequent genetic change known in patients with NK-AML and a number of studies have shown that NPM1 mutation positive patients have a better prognosis with longer event-free and overall survival (OS) [10]. Schnittger et al demonstrated that the favourable prognostic implications of NPM1 mutation status are overridden in FLT3-ITD positive cases which have a uniformly poor prognosis [7]. These findings demonstrate the need to screen patients for mutations in FLT3-ITD alongside NPM1 [10]. In this study we assessed the use of high resolution melting (HRM) analysis as a rapid method to screen NK-AML patient samples for the critical molecular changes in NPM1 and FLT3

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.