Abstract

Gene doping has raised concerns in human and equestrian sports and the horseracing industry. There are two possible types of gene doping in the sports and racing industry: (1) administration of a gene-doping substance to postnatal animals and (2) generation of genetically engineered animals by modifying eggs. In this study, we aimed to identify genetically engineered animals by whole-genome resequencing (WGR) for gene-doping control. Transgenic cell lines, in which the erythropoietin gene (EPO) cDNA form was inserted into the genome of horse fibroblasts, were constructed as a model of genetically modified horse. Genome-wide screening of non-targeted transgenes was performed to find structural variation using DELLY based on split-read and paired-end algorithms and Control-FREEC based on read-depth algorithm. We detected the EPO transgene as an intron deletion in the WGR data by the split-read algorithm of DELLY. In addition, single-nucleotide polymorphisms and insertions/deletions artificially introduced in the EPO transgene were identified by WGR. Therefore, genome-wide screening using WGR can contribute to gene-doping control even if the targets are unknown. This is the first study to detect transgenes as intron deletions for gene-doping detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.