Abstract

Physiocochemical evidence presented indicates plasmid deoxyribonucleic acid (DNA) can associate with host chromosome without linear insertion of the former into the latter. This conclusion is based on the observation that covalently closed circular (CCC) plasmid DNA can cosediment with undegraded host chromosome in a neutral sucrose gradient. When F plus bacteria are lysed under conditions that preserve chromosome, approximately 90% of CCC F sex factor plasmid (about 1% of the total DNA) is found in folded chromosomes sedimenting at rates between 1,500 and 4,000s. The remaining 10% of the CCC F DNA sediments at the rate (80S) indicative of the free CCC plasmid form. Reconstruction experiments in which 80S, CCC F DNA is added to F plus or F minus bacteria before cell lysis show that exogenous F DNA does not associate with folded chromosomes. In F plus bacteria, F plasmid is harbored at a level of one or two copies per chromosomal equivalent. In bacteria producing colicin E1, the genetic determinant of this colicin, the Col E1 plasmid, is harbored at levels of 10 to 13 copies per chromosomal equivalent; yet, greater than 90% of these plasmids do not cosediment with the 1,800S species of folded chromosome. However, preliminary evidence suggests one or two Col E1 plasmids may associate with the 1,800S folded chromosome. Based on evidence presented in this and other papers, we postulate F plasmid can link to folded chromosome because the physicochemical structure of the plasmid resembles a supercoiled region of the chromosome and, therefore, is able to interact with the ribonucleic acid that stabilizes the folded chromosome structure. Implications of this model for F plasmid replication and segregation are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.